Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Caldor fire burned ~222,000 acres of the Eastern Sierra Nevada during summer–fall 2021. We evaluated the effects of this “megafire” on the physical properties of a sandy soil developed from glacial tills to document fire-induced soil modifications in this region. We measured soil water retention and hydraulic conductivity functions as well as the thermal properties of five core samples from control (unburned) areas and eight core samples from burned soil of the same soil unit. Soil water repellency was measured in terms of water drop penetration time (WDPT) in the field and apparent contact angle in the laboratory on control and burned soil as well as ash samples. Soil organic matter (SOM) and particle and aggregate size distributions were determined on control and burned soil samples. Additionally, scanning electron microscopy (SEM) was used to image microaggregates of control and burned soil samples. We found a significant difference in SOM content and sand and silt aggregate size distribution between control and burned samples, which we associated with the disintegration of microaggregates due to the fire. We found no significant difference between soil water retention and hydraulic conductivity functions of control and burned soil but observed greater variation in saturated hydraulic conductivity and systematic shifts in thermal conductivity functions of burned compared to control samples. WDPT and apparent contact angle values were significantly higher for burned soils, indicating the occurrence of fire-induced soil hydrophobicity (FISH). Interestingly, the average apparent contact angle of the control soil was >90°, indicating that even the unburned soil was hydrophobic. However, the ash on top of the burned soil was found to be hydrophilic, having apparent contact angles <10°. Our results indicate that SOM and microaggregates were readily affected by the Caldor fire, even for sandy soil with a weakly developed structure. The fire seemed to have moderated thermal properties, significantly and soil wettability but had only minimal effects on water retention and hydraulic conductivity functions. Our findings demonstrate the complex nature of fire-soil interactions in a natural environment and highlight the need for additional investigation into the causes and processes associated with FISH and structure alterations due to fire to improve our ability to rapidly determine potential problem areas in terms of hazards commonly associated with fire-affected soils.more » « less
-
Starch is a polysaccharide that is abundantly found in nature and is generally used as an energy source and energy storage in many biological and environmental processes. Naturally, starch tends to be in miniscule amounts, creating a necessity for quantitative analysis of starch in low-concentration samples. Existing studies that are based on the spectrophotometric detection of starch using the colorful amylose–iodine complex lack a detailed description of the analytical procedure and important parameters. In the present study, this spectrophotometry method was optimized, tested, and applied to studying starch content of atmospheric bioaerosols such as pollen, fungi, bacteria, and algae, whose chemical composition is not well known. Different experimental parameters, including pH, iodine solution concentrations, and starch solution stability, were tested, and method detection limit (MDL) and limit of quantification (LOQ) were determined at 590 nm. It was found that the highest spectrophotometry signal for the same starch concentration occurs at pH 6.0, with an iodine reagent concentration of 0.2%. The MDL was determined to be 0.22 μg/mL, with an LOQ of 0.79 μg/mL. This optimized method was successfully tested on bioaerosols and can be used to determine starch content in low-concentration samples. Starch content in bioaerosols ranged from 0.45 ± 0.05 (in bacteria) to 4.3 ± 0.06 μg/mg (in fungi).more » « less
An official website of the United States government
